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GRACE Measurement Concept	
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•  Earth gravity features affect lead/trailing spacecraft at different times	


–  Lead spacecraft encounters feature first	



•  e.g. lead spacecraft speeds up towards mountain	


–  Range to trailing spacecraft increases	



–  Any unknown non-gravity forces acting on spacecraft also affect range	


•  Calibrated out using accelerometer or drag-free sensor system	





•  Range is determined by 
round-trip light time 
•  Pulsed light is used in SLR/LLR 

where photon rates are low 

•  Coherent signals allow use of 
phase delay for higher accuracy 

•  Range ambiguity by integer 
number of wavelengths can 
be resolved with modulation 
if required 
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Ranging Measurement Methods	
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Dual-one-way versus Transponding	



• GRACE uses independent 
transmission/detection at each 
spacecraft	



– Combination of data on ground 
determines range	



• Laser ranging will lock laser to 
frequency reference on one 
spacecraft and lock laser to 
received laser on seconds s/c	



– Otherwise laser frequencies 
would be too far apart	



– Fast phase meter needed for 
locking function	
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Microwave and Laser Ranging Sensitivity	
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Optical Cavity Frequency Reference	



• Stabilize laser frequency by 
locking wavelength to thermally 
stable optical cavity	



–  ULE glass has ultra-low thermal-
expansion coefficient	



– Isolate from external temperature 
fluctuations 	
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Cavity Mount Design	



• Cavity is mounted using 
flexures bonded to cavity 
central ring	



– Flexure material (Ti) and stiffness 
chosen to provide support and 
maintain alignment for launch 
and minimize thermo-elastic 
effects on cavity	



• Optics for injecting laser light 
into cavity via fiber are also 
mounted using flexures	
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Thermal Isolation Enclosure	



• Two concentric shells surround 
the cavity and optics to isolate 
them from external thermal	



• Size and mass of laser frequency 
stabilization subsystem has been 
iterated with GRACE spacecraft 
team to ensure compatibility	



• Inner shell forms a vacuum 
enclosure to avoid gas pressure 
fluctuations and contamination	



– Vacuum gauge and valve included  
for development will be replaced 
with vent-to-space actuator for 
flight	





11 

Laser Locking to Optical Cavity	



•  Laser locked to cavity using Pound-Drever-Hall technique	


– Light resonance occurs when cavity length is integer number of wavelengths	



•  Laser frequency stability is directly related to stability of length of cavity	


– Cavity is made of material with low thermal expansion coefficient	


– Light exiting cavity compared with light entering cavity	


– Requires electro-optical modulator to add phase-modulation to laser beam	



•  Difference in modulation signal gives laser correction to match cavity	
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Tunable Laser	
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• Non-planar ring oscillator 
(NPRO) Nd:YAG laser provides 
tunability for locking to cavity	



– Laser wavelength adjusted by 
changing dimensions of YAG 
crystal using PZT glued to crystal 
and thermal adjustment	



• Space-qualified NPRO laser 
available from Tesat Spacecom	



NPRO laser head 

Laser pump diode assembly 
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Electro-Optical Modulator	



• Several companies make EOM 
suitable for use in space	



• Selected unit from Photline has 
inexpensive laboratory model 
traceable to flight model	



– Tested to show meets locking 
requirements	
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Breadboard Locking Electronics	



l  Commercial FPGA 
evaluation board used for 
development and testing of 
laser locking algorithms	



l  ADC for sampling interference 
signal from photodiode	



l  DACs used to adjust laser 
crystal frequency via PZT and 
temperature	





Subsystem Performance Results	
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Frequency stability measured with cavity in simulated spacecraft thermal environment 
 Interior panel temperature variation +/- 1°C 



Environmental Test Results	



• Breadboard cavity thermal tests showed a slight misalignment 
occurred at highest temperatures	



– Traced to adhesive glass transition at 50C	



• Prototype cavity assembled is improved processes	


– Successfully passed thermal and vibration tests	



• Cavity assembly is at TRL-6	



• EOM thermal test passes, vibration test pending	


• Electronics prototype still in assembly	
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Future Plans	



• Prototype electronics are in final assembly	


– Performance and environmental tests planned to establish TRL-6	



• Functional system-level test planned with inter-spacecraft optics 
from IIP-02	



• GRACE-FO project started June 2011 with laser ranging included 
as technology demonstration	



– Will include cavity and electronics developed under IIP-07	


• Cavity enclosure needs to be slightly modified to fit allocated volume	



– Optical benches, beam steering mirror and routing optics to be provided by 
Germany	



– Beam steering and initial acquisition are major system-level challenges 
remaining	
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GRACE Spacecraft	
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SuperSTAR Accelerometer	
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ONERA 



Racetrack Configuration	
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Lateral Transfer Hollow Retroreflector™	
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IRT Optical Bench	




